
44 The Delphi Magazine Issue 56

Hyperactive
More multithreading, this time
with producers and consumers

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

At about the time I was writing
last month’s article, one of my

dear friends, Jim Modrall, died sud-
denly of an aortic aneurysm. He
was a mere 53 years old, a gentle,
levelheaded man. I had acted with
him in several plays over the past
few years (happy times) and he
was well known and liked within
the Colorado Springs theatre com-
munity. He and his wife Nancy had
always supported my wife Donna
and I in our lives and careers (he
used to be a District Attorney,
Donna’s chosen career, and would
regale us with stories about some
of his trials). With your permis-
sion, I would like to dedicate this
article to his memory and to
Nancy.

Change His Ways
Last month, in Algorithms Alfresco,
we briefly reviewed the various
multithreaded synchronization
objects available in 32-bit Windows
and then designed and imple-
mented a compound synchroniza-
tion object that solved the
Readers/Writers problem. To
recap, the new object enabled
access to some data in order that
multiple threads, which were
either exclusively reading or
updating the structure, were prop-
erly synchronized. We allowed
many reader threads to access the
data at the same time (since they
were doing nothing to alter the
structure), but restricted access
so that a writer thread was the only
thread accessing the structure at
any particular time. The object we
created, in essence, sequenced
access so that many reader
threads were active, followed by
one writer thread, followed by
many reader threads, and so on.

If you recall, we used a TList as
the example data structure to
which we wanted to synchronize
access. If we were scrupulously
honest and vigilant about using

a TaaReadWriteSync object, we
could access the TList properly
without fear of corrupting data.
But, as soon as we forget to use the
class, even in only one thread, in
any one part of the code, data
would be corrupted sooner or
later. We may not even notice
straight away.

In Delphi 3 and above, Borland
provided the TThreadedList class
to try and avoid this problem.
When a thread wants to use the
TList encapsulated by the
TThreadedList, it calls the LockList
method. This returns a TList
instance that the thread can then
use with impunity until it calls
UnlockList to release its exclusive
access. (Internally the TThreaded-
List is using a critical section to
lock access.) There is no way
(unless we want to play silly coding
tricks) to get hold of the internal
TList unless we call the LockList
method. This sounds pretty good,
and we could certainly do much
the same thing with last month’s
TaaReadWriteSync class.

However, it’s still pretty long-
winded and error-prone. We have
to call the ‘lock’ method. We can
then access the list. Afterwards we
have to remember to call the ‘un-
lock’ method. Even worse, the
‘lock’ method returns a pointer to
the internal list that we could try to
use even after we’d called the
‘unlock’ method. Brrrr.

It would be much better surely if
we had a class that encapsulated
all access to the internal list, and
that ensured that the required
calls to lock and unlock the inter-
nal data structure were made. We
then wouldn’t have to worry about
making sure we used the locking
mechanism: it would be enforced
on us by the data structure itself.
We also wouldn’t have access to
the internal list since we would
never get a pointer to it: it remains
completely hidden.

Looking For Clues
In the multithreading community,
this kind of object is known as a
monitor. I don’t know why the word
‘monitor’ was coined for such an
object; it seems a little bizarre.
Anyway, a monitor is a black box
that encapsulates a resource or
several resources. Inside the black
box is a synchronization object to
regulate proper access to the data
by several threads and, of course,
the data itself. Every method of the
monitor ensures that the thread
calling it is allowed to access the
data. They each lock the object,
perform the required access to the
data, and then unlock the object.
To the outside world, these she-
nanigans are completely hidden:
the thread merely calls the Add
method, or the Countproperty, and
so on.

Let’s encapsulate the readers/
writers synchronization object
into a thread-safe TList as a moni-
tor. The first thing that we need to
do is to create the class interface,
and this must look the same as the
TList interface. Listing 1 shows the
class definition for the TaaThr-
eadedList, where I have exposed
the usual TList methods and
properties. However, notice that
the read clauses for each property
define functions. In the ‘real’ TList,
for example, the read clause for the
Count property is merely the inter-
nal field, FCount, whereas in the
TaaThreadedList it is defined as a
call to a function. Sharing a data
field in a multithreaded applica-
tion means that we have to make
it thread-safe and these functions,
as we shall see, will enforce that
for us.

46 The Delphi Magazine Issue 56

Next, we need to categorize each
method as a method that merely
reads the TList or as a method that
alters the structure or sequence of
the TList; in other words, as
reading methods or as writing
methods. For the TList, it’s fairly
simple. The tlGetItem, tlGetCount,
and tlGetCapacity methods are
reading methods, for example; a lot
of the others update the list one
way or another.

Generally, the implementation of
each method is simplicity itself,
and trivial to code. We call the
tlStartReading or tlStartWriting
method to lock the list, call the
required method of the internal
TList to do the job, and then call
the tlStopReading or tlStopWriting
method to complete the job.
Obviously we use try...finally
blocks to ensure that the object
is left in an unlocked state at
the end of each method. I have
shown a few representative meth-
ods of the TaaThreadedList in
Listing 2. Interested readers can
of course find the entire object
source code on this month’s
companion disk.

Get It Through Your Heart
Now that we’ve extensively ana-
lysed a particular multithreaded
problem, the readers/writers prob-
lem, and provided a standalone
synchronization class for it, as well
as a TList monitor, let’s consider
some more classic multithreaded
problems and their solutions.

The readers/writers problem is a
variant of a class of scenarios
known as producer/consumer
problems. In a producer/consumer

problem, we have the situation
where one or more threads are
producing data that one or more
threads are then using or
consuming.

This definition is a little opaque,
so let’s consider a couple of exam-
ples. The first is video streaming.
In this situation, we have a pro-
gram that is displaying a video on
the screen. Concurrently to us
watching the movie, the program
is downloading the video
sequences from the internet as a
stream of data. If this were imple-
mented as a single-threaded pro-
gram, we’d get a very choppy
video. The program would down-
load a chunk of the video, then dis-
play it, then get the next chunk,
and so on. As a multithreaded
application, however, the program
could start up a thread to get the
video data off the internet (or,
indeed, several threads) and start
a thread that just displays data.
The thread or threads that down-
load the data are the producers and
the thread that displays the video
is the consumer. We must of course
synchronize the data access so
that the consumer doesn’t read a
buffer’s worth of data until the
producer has actually finished
downloading it. Similarly a pro-
ducer cannot reuse a buffer until
the consumer has displayed it all.

type
TaaThreadedList = class
private
FList : TList;
FLock : TaaReadWriteSync;

protected
function tlGetItem(aInx : integer) : pointer;
function tlGetCapacity : integer;
function tlGetCount : integer;
procedure tlPutItem(aInx : integer; aItem : pointer);
procedure tlSetCapacity(aNewCapacity : integer);
procedure tlSetCount(aNewCount : integer);

public
constructor Create;
destructor Destroy; override;
function Add(aItem : pointer) : integer;
procedure Clear; virtual;
procedure Delete(aInx : integer);
procedure Exchange(aInx1, aInx2 : integer);
function Extract(aItem : pointer) : pointer;
function First : pointer;
function IndexOf(aItem : pointer) : integer;
procedure Insert(aInx : integer; aItem : pointer);
function Last : pointer;
procedure Move(aCurInx, aNewInx : integer);
function Remove(aItem : pointer) : integer;
property Capacity : integer
read tlGetCapacity write tlSetCapacity;

property Count : integer read tlGetCount write tlSetCount;
property Items[aInx : integer] : pointer
read tlGetItem write tlPutItem; default;

end;

➤ Listing 1: The TaaThreadedList
class definition.

function TaaThreadedList.Add(aItem : pointer) : integer;
begin
{Add is a writer}
FLock.StartWriting;
try
Result := FList.Add(aItem);

finally
FLock.StopWriting;

end;
end;
procedure TaaThreadedList.Delete(aInx : integer);
begin
{Delete is a writer}
FLock.StartWriting;
try
FList.Delete(aInx);

finally
FLock.StopWriting;

end;
end;
function TaaThreadedList.IndexOf(aItem : pointer) : integer;
begin
{IndexOf is a reader}
FLock.StartReading;
try
Result := FList.IndexOf(aItem);

finally
FLock.StopReading;

end;
end;
function TaaThreadedList.tlGetItem(aInx : integer) :
pointer;

begin
{tlGetItem is a reader}
FLock.StartReading;
try
Result := FList[aInx];

finally
FLock.StopReading;

end;
end;

➤ Listing 2: Some
TaaThreadedList methods.

April 2000 The Delphi Magazine 47

Another example is a stream
copy routine. Usually, when we
write a stream copy routine, we
write a simple loop of reading a
block of data from the source
stream and then writing it to the
destination stream. We alternate
between reading data and writing
it, each time waiting for the stream
access to finish before moving to
the next. If the reading code (the
producer) were being executed in
a different thread than the writing
code (the consumer), we could
perform both actions concur-
rently. Of course, we would have to
synchronize the producer and con-
sumer so that one wasn’t using a
buffer at the same time as the
other.

Casting A Spell
Let’s consider this second example
and flesh it out. If we shared one
buffer between producer and con-
sumer, we wouldn’t be that much
better off than the original sequen-
tial stream copy method. The pro-
ducer would have to fill the buffer,
release the consumer to read the

buffer, and then go to sleep. Once
the consumer has read the buffer,
it would re-awaken the producer to
refill the buffer and then go to sleep
itself. We’d get a series of read a
buffer, write a buffer, but instead of
being sequential in a single thread,
we’d be continually switching from
one thread to another; the threads
are said to be in lockstep. In fact,
due to the overhead of swapping
between threads, it would run
more slowly than the simple
sequential case.

No, this situation cries out for a
more sophisticated algorithm. We
shall use several buffers. The pro-
ducer will fill a buffer and put it in a
queue, and then go ahead and fill
another buffer. The consumer will
get the buffer at the top of the
queue and process it, before going
back to get the next buffer. In this
way the producer can go ahead
and try and fill up the buffers in the
queue as fast as it can and the con-
sumer can, in turn, try and read
them as fast as it can. The producer
will stall if the consumer isn’t fast
enough and the queue fills up with

unread buffers. Similarly the con-
sumer will stall if the producer is
slow and the queue empties.

In practice, the queue is imple-
mented as a circular queue. The
queue is created with all of its buff-
ers pre-allocated. (We do not want
to use the heap manager during
the stream copy process since a
critical section protects the heap
manager in a multithreaded pro-
gram. If we start to call memory
allocation and deallocation rou-
tines from our threads they will
block each other too easily.) The
producer will fill up the buffer at
the tail of the queue and advance
the tail pointer. The consumer, on
the other hand, will read the data
in the buffer at the head of the
queue and advance the head. The
fill and the read processes can
occur at the same time since they
use different buffers.

If this were all we had to worry
about, the code would be simple to
write indeed: a single critical sec-
tion to protect the reading and
updating of the queue pointers and
we’d be off. However, there are

48 The Delphi Magazine Issue 56

also two boundary conditions we
have to worry about. If the queue is
full (in other words, all the buffers
in the queue are filled, waiting for
the consumer to read them), the
producer has nowhere to write a
buffer’s worth of data. It must
therefore be blocked until the
consumer has released at least one
buffer to be reused. Similarly, if the
queue is empty, the consumer
must be blocked until such time
that the producer has managed to
fill another buffer.

For each of these two situations,
we shall use a semaphore. The first
semaphore will be the ‘queue is not
full’ semaphore, the second will be
the ‘queue is not empty’ sema-
phore. If the queue is not full, in
other words the producer can fill at
least one buffer (the one at the tail
of the queue), the first semaphore
is signalled.

Since it is the consumer that
determines whether the queue is
full or not, it is the consumer that
will signal the semaphore: the
producer will merely wait on it. If,
on the other hand, the queue is not
empty (that is, at least one buffer is
ready to be read from the head of
the queue), the second semaphore

is signalled. This is the producer’s
job, since it is the producer that
determines this situation.

Let’s now write the stream copy
routine. The routine accepts two
parameters: the input stream and
the output stream. It creates a
special object of type TQueued-
Buffers. This object contains all
the resources necessary to imple-
ment a queued set of buffers: the
buffers themselves, a semaphore
for the ‘queue is not empty’ condi-
tion, and a semaphore for the
‘queue is not full’ condition. The
latter semaphore is created with
the full count already set (indicat-
ing that all of the buffers are
unused). Listing 3 has the code for
this simple class.

The copy routine then creates
the two threads that will perform
the copy, and resumes them (they
are created suspended). The pro-
ducer thread enters a loop. Each
time through the loop, it waits on
the ‘queue is not full’ semaphore,
and when it is signalled, it reads a
block of data from the source
stream into the buffer at the head
of the queue. It then advances the
head pointer. Finally it signals the
‘queue is not empty’ semaphore
and goes round the loop again.

The consumer thread’s loop, on
the other hand, proceeds as

follows. First, it waits on the ‘queue
is not empty’ semaphore. When
signalled, it reads the buffer from
the tail pointer and writes it to the
destination stream. It then
advances the tail pointer. Finally, it
signals the ‘queue is not full’ sema-
phore and goes round the loop
again. In order to signal that the
producer has read all of the data
from the source stream, each
buffer in the queue has a count of
bytes in the buffer. When zero, the
consumer is to take this as mean-
ing that the source stream was
exhausted.

Listing 4 has the complete code
for this routine and the two thread
classes.

Some of you might have got a
little worried after perusing the
code and the description, pointing
out that we were allowing multiple
threads to update the same data at
the same time: the queue’s point-
ers. In fact, what happens is that
the two semaphores provide us
with enough synchronization that
we cannot corrupt the queue. The
head pointer is only read and
updated by the producer thread;
the tail pointer only by the con-
sumer thread. Never do we com-
pare head and tail pointers in one
single thread (the usual way of
determining whether a queue is

TQueuedBuffers = class
private
FBufCount : integer;
FBuffers : PBufferArray;
FHead : integer;
FIsNotEmpty : THandle;
FIsNotFull : THandle;
FTail : integer;

protected
function qbGetHead : PBuffer;
function qbGetTail : PBuffer;

public
constructor Create(aBufferCount : integer);
destructor Destroy; override;
procedure AdvanceHead;
procedure AdvanceTail;
property Head : PBuffer read qbGetHead;
property Tail : PBuffer read qbGetTail;
property IsNotEmpty : THandle read FIsNotEmpty;
property IsNotFull : THandle read FIsNotFull;

end;
constructor TQueuedBuffers.Create(aBufferCount : integer);
var
i : integer;

begin
inherited Create;
{allocate the buffers}
FBuffers := AllocMem(aBufferCount * sizeof(pointer));
for i := 0 to pred(aBufferCount) do
GetMem(FBuffers^[i], sizeof(TBuffer));

FBufCount := aBufferCount;
{create the semaphores}
FIsNotFull :=
CreateSemaphore(nil, aBufferCount, aBufferCount, '');

FIsNotEmpty :=
CreateSemaphore(nil, 0, aBufferCount, '');

end;
destructor TQueuedBuffers.Destroy;

var
i : integer;

begin
{destroy the semaphores}
if (FIsNotFull <> 0) then
CloseHandle(FIsNotFull);

if (FIsNotEmpty <> 0) then
CloseHandle(FIsNotEmpty);

{free the buffers}
if (FBuffers <> nil) then begin
for i := 0 to pred(FBufCount) do
if (FBuffers^[i] <> nil) then
FreeMem(FBuffers^[i], sizeof(TBuffer));

FreeMem(FBuffers, FBufCount * sizeof(pointer));
end;
inherited Destroy;

end;
procedure TQueuedBuffers.AdvanceHead;
begin
inc(FHead);
if (FHead = FBufCount) then
FHead := 0;

end;
procedure TQueuedBuffers.AdvanceTail;
begin
inc(FTail);
if (FTail = FBufCount) then
FTail := 0;

end;
function TQueuedBuffers.qbGetHead : PBuffer;
begin
Result := FBuffers^[FHead];

end;
function TQueuedBuffers.qbGetTail : PBuffer;
begin
Result := FBuffers^[FTail];

end;

➤ Listing 3: The TQueuedBuffers
class for one consumer.

50 The Delphi Magazine Issue 56

empty, or full, or somewhere in
between). Instead we make use of
the fact that a semaphore is a
thread-safe counter. We preload
the counter of the ‘queue is not full’
semaphore with the number of
buffers available. After that point,
it’s as if we are passing tokens from
the producer thread to the con-
sumer thread via the two sema-
phores. The producer gets a token
from the ‘queue is not full’ sema-
phore (decrementing its count)
and then, after filling the head
buffer, passes it to the ‘queue is not
empty’ semaphore (incrementing
its count). The consumer gets a
token from this latter semaphore
(decrementing its count) and then,
after reading the tail buffer, passes
it to the ‘queue is not full’ sema-
phore (incrementing its count).

Addicted To Love
Another producer/consumer
problem that deserves special
attention is the ‘one producer, sev-
eral consumers’ scenario. There
are two variants of this problem.

The first is the one where the pro-
ducer thread is producing a series
of packets of data that the con-
sumer threads pick off one by one
and process. It doesn’t matter
which consumer processes which
packet, all consumers are the same
and the packets do not have to be
serialized in any way. The other sit-
uation is where the producer
thread is generating data that each
of the consumer threads has to
read.

This second situation is the
more interesting. An example sce-
nario is a stock quotes reader, a
communications program that
logs onto some private server and
then just receives a stream of stock
quote data. If we were sophisti-
cated designers, we would imple-
ment this as a multithreaded
program. The first thread would be
the producer thread that receives
the stream of data, chops it up into
packets that are then placed on a
queue. We would then add to our
design several consumer threads
that all read the same data. The
first would get the data and display
it continuously on the screen for
the trader (a kind of tickertape dis-
play). The second thread would

get the data and update a database
containing our stock portfolio. The
third would log the data in some
form. There could be other
threads doing other specific jobs,
but as you can see each consumer
thread ends up doing one particu-
lar job with the data, with all of
them reading the same data.

This looks pretty difficult to syn-
chronize, but if we take it gently,
it’s not so bad. We shall make
things easier for ourselves in this
article by describing a routine that
copies a single stream to several
different streams simultaneously.
That way, we won’t get bogged
down with display issues and the
like.

As with the multithreaded,
multibuffered stream copy routine
using a single producer and a
single consumer, we shall use a cir-
cular queue of many buffers. This
way the producer can continue to
fill buffers at the tail of the queue,
whilst the many consumers are all
trying to read the buffers at the
head of the queue. Since we now
have many consumers we shall, in
effect, have many queue heads,
one per consumer. That way, a par-
ticular consumer can, if it doesn’t

constructor TProducer.Create(aStream : TStream;
aBuffers : TQueuedBuffers);

begin
inherited Create(true);
FStream := aStream;
FBuffers := aBuffers;

end;
procedure TProducer.Execute;
var
Tail : PBuffer;

begin
{do until the stream is exhausted...}
repeat
{get the 'queue is not full' semaphore}
WaitForSingleObject(FBuffers.IsNotFull, INFINITE);
{read a block from the stream into the tail buffer}
Tail := FBuffers.Tail;
Tail^.bCount := FStream.Read(Tail^.bBlock, BufferSize);
{advance the tail pointer}
FBuffers.AdvanceTail;
{as we've written a new buffer, signal the
'queue is not empty' semaphore}
ReleaseSemaphore(FBuffers.IsNotEmpty, 1, nil);

until (Tail^.bCount = 0);
end;
constructor TConsumer.Create(aStream : TStream;
aBuffers : TQueuedBuffers);

begin
inherited Create(true);
FStream := aStream;
FBuffers := aBuffers;

end;
procedure TConsumer.Execute;
var
Head : PBuffer;

begin
{get the 'queue is not empty' semaphore}
WaitForSingleObject(FBuffers.IsNotEmpty, INFINITE);
{get the head buffer}
Head := FBuffers.Head;
{while the head buffer is not empty...}
while (Head^.bCount <> 0) do begin
{write a block from the head buffer into the stream}
FStream.Write(Head^.bBlock, Head^.bCount);

{advance the head pointer}
FBuffers.AdvanceHead;
{as we've read a buffer, signal the
'queue is not full' semaphore}
ReleaseSemaphore(FBuffers.IsNotFull, 1, nil);
{get the 'queue is not empty' semaphore}
WaitForSingleObject(FBuffers.IsNotEmpty, INFINITE);
{get the head buffer}
Head := FBuffers.Head;

end;
end;
procedure AAThreadedcopyStream(
aSrcStream, aDestStream : TStream);

var
Buffers : TQueuedBuffers;
Producer : TProducer;
Consumer : TConsumer;
WaitArray : array [0..1] of THandle;

begin
Buffers := nil;
Producer := nil;
Consumer := nil;
try
{create the queued buffer object (20 buffers)
and the two threads}
Buffers := TQueuedBuffers.Create(20);
Producer := TProducer.Create(aSrcStream, Buffers);
Consumer := TConsumer.Create(aDestStream, Buffers);
{save the thread handles so we can wait on them}
WaitArray[0] := Producer.Handle;
WaitArray[1] := Consumer.Handle;
{start the threads up}
Consumer.Resume;
Producer.Resume;
{wait for the threads to finish}
WaitForMultipleObjects(2, @WaitArray, true, INFINITE);

finally
Producer.Free;
Consumer.Free;
Buffers.Free;

end;
end;

➤ Listing 4: The producer thread,
the consumer thread, and the
stream copy routine.

April 2000 The Delphi Magazine 51

do much processing per buffer,
race ahead and catch up with the
producer. We don’t have to ensure
that all the consumers stay in
lockstep, we just have to ensure
that they each read the buffers in
sequence and don’t overtake the
producer.

We can model this TQueueBuffer
object on the one we designed ear-
lier, except that the head pointer is
no longer a single entity, since we
need one per consumer. An array
of them will suffice.

Well, if we have an array of head
pointers to create the effect of
many queues, it makes sense to
have an array of ‘queue is not
empty’ semaphores, one per con-
sumer again. The producer, when
it fills another buffer at the tail of
the queue, will signal all of the
‘queue is not empty’ semaphores.
Apart from these two arrays (and
the methods and code needed to
service them), the two TQueue-
Bufferclasses look much the same.

The producer thread also looks
the same. It will wait on the ‘queue
is not full’ semaphore (we’ll dis-
cuss how this is signalled in a
moment), and when it succeeds it
will read another buffer from the
source stream into the tail buffer
and advance the tail pointer. It
then signals all of the consumers’

‘queue is not empty’ semaphores,
and goes round the loop again.

The consumer thread has a little
more to do. It waits on its ‘queue is
not empty’ semaphore, which will
eventually be signalled by the
producer. It can then read the data
from its own head buffer (recall
that there is one per consumer)
and then comes the clever bit. The
consumers must all read each
buffer filled by the producer
thread. The consumer that is last
to read a particular buffer must
signal the producer’s ‘queue is not
full’ semaphore. The others can’t,
since the producer could take that
signal as meaning the buffer can
now be overwritten, and hence it
must be the last consumer that
does the job.

How can we tell if all the other
consumers have read the buffer?
Well, the producer, when it fills a
buffer at the tail of the queue, will
set a field of the buffer to the
number of consumers that still
have to read the buffer. Obviously,
as far as the producer is
concerned, that is all of the
consumers. Each consumer, once
it has finished using the buffer at its
head, will decrement this count for
the buffer. The consumer that
decrements this count to zero is
obviously the last consumer
reading that particular buffer, and
hence is the consumer that signals
the producer’s semaphore.

It Could Happen To You
But (and this is a ‘but’ that should
have struck you forcefully) a
particular buffer’s count of con-
sumers still to read it is possibly
going to be read and updated by
several consumer threads at once.
This is the classic race condition I
was talking about last time.
Suppose there are two threads,
and consumer A reads the count
ready to decrement it. It gets the
value 2, and decrements it to 1.
Before it can write the new value
back, consumer B gets control,
reads the count, 2, decrements it
to 1 and writes it back. Consumer A
gets control again and this time
manages to write its new value, 1,
back. Both threads have finished
with the buffer, but the count value
is still only 1. The producer is
never signalled and we get a
deadlock.

No, we must decrement the
count in a thread-safe manner.
Rather than using a critical section
or a mutex, this time we shall use
another Win32 primitive, the
InterlockedDecrement function.
This takes the address of a 32-bit
value, decrements the value there
in a synchronized manner, and
returns either zero if the new value
was zero, or some other non-zero
value if not. It does not return the
new value, unless that new value
happened to be zero, that is. This
routine is ideal for our use, it’s

constructor TQueuedBuffers.Create(aBufferCount : integer;
aConsumerCount : integer);

var
i : integer;

begin
inherited Create;
{allocate the buffers}
FBuffers := AllocMem(aBufferCount * sizeof(pointer));
for i := 0 to pred(aBufferCount) do
GetMem(FBuffers^[i], sizeof(TBuffer));

FBufCount := aBufferCount;
{create the semaphores}
FConsumerCount := aConsumerCount;
FIsNotFull :=
CreateSemaphore(nil, aBufferCount, aBufferCount, '');

for i := 0 to pred(aConsumerCount) do
FIsNotEmpty[i] :=
CreateSemaphore(nil, 0, aBufferCount, '');

end;
destructor TQueuedBuffers.Destroy;
var
i : integer;

begin
{destroy the semaphores}
if (FIsNotFull <> 0) then
CloseHandle(FIsNotFull);

for i := 0 to pred(ConsumerCount) do
if (FIsNotEmpty[i] <> 0) then
CloseHandle(FIsNotEmpty[i]);

{free the buffers}
if (FBuffers <> nil) then begin
for i := 0 to pred(FBufCount) do
if (FBuffers^[i] <> nil) then
FreeMem(FBuffers^[i], sizeof(TBuffer));

FreeMem(FBuffers, FBufCount * sizeof(pointer));
end;
inherited Destroy;

end;
procedure TQueuedBuffers.AdvanceHead(aConsumerId : integer);
begin
inc(FHead[aConsumerId]);
if (FHead[aConsumerId] = FBufCount) then
FHead[aConsumerId] := 0;

end;
procedure TQueuedBuffers.AdvanceTail;
begin
inc(FTail);
if (FTail = FBufCount) then
FTail := 0;

end;
function TQueuedBuffers.qbGetHead(aInx : integer) : PBuffer;
begin
Result := FBuffers^[FHead[aInx]];

end;
function TQueuedBuffers.qbGetIsNotEmpty(aInx : integer) :
THandle;

begin
Result := FIsNotEmpty[aInx];

end;
function TQueuedBuffers.qbGetTail : PBuffer;
begin
Result := FBuffers^[FTail];

end;

➤ Listing 5: The TQueuedBuffers
class for many consumers.

52 The Delphi Magazine Issue 56

constructor TProducer.Create(aStream : TStream;
aBuffers : TQueuedBuffers);

begin
inherited Create(true);
FStream := aStream;
FBuffers := aBuffers;

end;
procedure TProducer.Execute;
var
Tail : PBuffer;
i : integer;

begin
repeat
{get the 'queue is not full' semaphore}
WaitForSingleObject(FBuffers.IsNotFull, INFINITE);
{read a block from the stream into the head buffer}
Tail := FBuffers.Tail;
Tail^.bCount :=
FStream.Read(Tail^.bBlock, BufferSize);

Tail^.bToReadCount := FBuffers.ConsumerCount;
FBuffers.AdvanceTail; {advance the tail pointer}
{as we've written a new buffer, signal all the
'queue is not empty' semaphores}
for i := 0 to pred(FBuffers.ConsumerCount) do
ReleaseSemaphore(FBuffers.IsNotEmpty[i], 1, nil);

until (Tail^.bCount = 0); {do until stream exhausted}
end;
constructor TConsumer.Create(aStream : TStream; aBuffers :
TQueuedBuffers; aID : integer);

begin
inherited Create(true);
FStream := aStream;
FBuffers := aBuffers;
FID := aID;

end;
procedure TConsumer.Execute;
var
Head : PBuffer;
NumToRead : integer;

begin
{get our 'queue is not empty' semaphore}
WaitForSingleObject(FBuffers.IsNotEmpty[FID], INFINITE);
Head := FBuffers.Head[FID]; {get the head buffer}
{while the head buffer is not empty...}
while (Head^.bCount <> 0) do begin
{write a block from the head buffer into the stream}
FStream.Write(Head^.bBlock, Head^.bCount);
{we've finished with this buffer, so safely decrement
count of consumers who have still to read it}
NumToRead := InterlockedDecrement(Head^.bToReadCount);
{advance our head pointer}
FBuffers.AdvanceHead(FID);
{if we were the last consumer to read this buffer...}
if (NumToRead = 0) then
{signal the 'queue is not full' semaphore}
ReleaseSemaphore(FBuffers.IsNotFull, 1, nil);

{get our 'queue is not empty' semaphore}
WaitForSingleObject(FBuffers.IsNotEmpty[FID],
INFINITE);

Head := FBuffers.Head[FID]; {get the head buffer}
end;

end;
procedure AAThreadedMultiCopyStream(aSrcStream : TStream;
aDestCount : integer; aDestStreams : PaaStreamArray);

var
i : integer;
Buffers : TQueuedBuffers;
Producer : TProducer;
Consumer : array [0..pred(aac_MaxConsumers)]
of TConsumer;

WaitArray : array [0..aac_MaxConsumers] of THandle;
begin
Buffers := nil;
Producer := nil;
for i := 0 to pred(aac_MaxConsumers) do
Consumer[i] := nil;

for i := 0 to aac_MaxConsumers do WaitArray[i] := 0;
try
{create the queued buffer object}
Buffers := TQueuedBuffers.Create(20, aDestCount);
{create the producer thread, save its handle}
Producer := TProducer.Create(aSrcStream, Buffers);
WaitArray[0] := Producer.Handle;
{create the consumer threads, save their handles}
for i := 0 to pred(aDestCount) do begin
Consumer[i] :=
TConsumer.Create(aDestStreams^[i], Buffers, i);

WaitArray[i+1] := Consumer[i].Handle;
end;
for i := 0 to pred(aDestCount) do
Consumer[i].Resume; {start the threads up}

Producer.Resume;
{wait for the threads to finish}
WaitForMultipleObjects(1+aDestCount, @WaitArray, true,
INFINITE);

finally
Producer.Free;
for i := 0 to pred(aDestCount) do Consumer[i].Free;
Buffers.Free;

end;
end;

➤ Listing 6: The producer, the consumer, and the
stream multicopy routine.

extremely fast and it returns a value we can use
immediately.

Listing 6 has the final code for the producer thread
class in this situation, the consumer thread class, and
the routine that ties it all together.

Simply Irresistible
With that we come to the end of an interesting column
and the last one I shall do on multithreading until I can
get my hands on Kylix. I hope you found it useful and
that you can use the ideas and methodology behind the
multi-buffered copy routines, if not the routines them-
selves, in your applications.

Next month, I should have had enough time to judge
the entries for the simulated annealing contest and will
announce the result.

Julian Bucknall is still hard at work writing the Delphi
algorithms book for the new Millennium, and can be
reached at julianb@turbopower.com. The code that
accompanies this article is freeware and can be used
as-is in your own applications.

© Julian M Bucknall, 2000

	Change His Ways
	Looking For Clues
	Get It Through Your Heart
	Casting A Spell
	Addicted To Love
	It Could Happen To You
	Simply Irresistible

